SYLLABUS: PGT Physics in DOE & NDMC

- 1. Physical World and Measurement.
- 2. Kinematics, Law of Motion.
- 3. Work, Energy & Power.
- 4. Motion of Systems and Particles & Rigid Body.
- 5. Gravitation:
- 6. Bulk Matter
- 7. Thermodynamics.
- 8. Oscillations & Waves.
- 9. Electrostatics.
- 10. Current Electricity.
- 11. Magnetic Effect.
- 12. Modern Physics.
- 13. Electronic Devices.
- 14: Quantum Mechanics
- 15. Mathematical Physics
- 16. Classical Mechanics
- 17. Electronics
- 18. Condensed Matter Physics
- 19. Quantum Electrodynamics
- 20. Atomic and Molecular physics
- 21. Nuclear and Particle Physics
- 22. Advanced Topics in Material Science
- 23. Numerical Analysis & Programming
- 24. Laser Physics
- 25. Classical Field Theory
- 26. Characterization of Materials
- 27. Photonics
- 28. General Relativity
- 29. Statistical Mechanics
- 30. Physics and Technology of Semi Conductor Devices
- 31. Quantum Optics
- 32. Particle Physics
- 33. Novel Materials
- 34. Laser Spectroscopy
- 35. Quantum field theory
- 36. Electromagnetic Theory
- 37. Radiation Theory
- . 38. Electronic Physics
 - 39. Solid State Physics and waves and optics
 - 40. Physics at Nanoscale
 - 41. Plasma Physics
 - 42. Astronomy and Astrophysics
 - 43. General Theory of Relativity and Cosmology
 - 44. High Energy Physics

Unit I: Physical World and Moasurement

Need for measurement: Units of measurement; systems of units; SI units, fundamental and durived units. Length, mass and time measurements; accuracy and precision of measuring Instruments; errors in measurement; significant figures. dimensional analysis and its applications.

Unit II: Kinomatics

Frame of reference. Motion in a one ,two and three dimension: Position-time graph, speed and velocity.

thitern and non-uniform motion, average speed and instantaneous velocity. Uniformly accelerated motion, velocity-line, position-time graphs, relations for uniformly to not writting but notifible, arother trempoliphing notificed; ground, notifible, arother before and an incident and control of the control vectors. Relative velocity scalar product of vectors, Vector product of vectors. Unit vector; Resolution of a vector in a plane - rectangular components. Motion in a plane. Cases of uniform velocity and uniform acceleration-projectile motion.

Unit III: Laws of Motion

Intuitive concept of force. Inertia, Newton's first law of motion; momentum and Newton's second law of motion; impulse; Newton's third law of motion. Law of conservation or linear momentum and its applications.

Equilibrium of concurrent forces. Types of friction, laws of friction, .Dynamics of uniform circular motion.

Unit IV: Work, Energy and Power

Work done by a constant force and a variable force; kinetic

energy, work-energy theorem, power,

Notion of potential energy, potential energy of a spring, conservative forces: conservation of mechanical energy (kinetic and potential energies); non-conservative forces: elastic and inelastic collisions in one and two dimensions.

Unit V: Motion of System of Particles and Rigid Body

Centre of mass of a two-particle system, momentum conversation and centre of mass motion. Centre of mass of a rigid body; centre of mass of uniform rod. ; moment of a force, torque, angular momentum, conservation

of angular momentum with some examples.

Dynamics of rigid bodies, comparison of linear and rotational motions; moment of linertia, radius of gyration.

Values of moments of inertia for geometrical objects. Parallel and perpendicular axis theorems and their applications.

Unit VI: Gravitation

Keplar's laws of planetary motion. The universal law of gravitation. Variation of Acceleration due to gravity and with altitude, latitude and depth. Gravitational potential energy; gravitational potential. Escape velocity. Orbital velocity, of a satellite. Geo-stationary satellites.

Unit VII: Properties of Bulk Matter

Elastic behaviour, Stress-strain relationship, Hooke's law, modulus of elasticity . Pressure due to a fluid column; Pascal's law and its applications Viscosity, Stokes' law, terminal velocity, Reynold's number, streamline and turbulent flow. Bernoulli's theorem and its applications.

Surface energy and surface tension, application of surface tension ideas

to drops, bubbles and capillary rise.

Heat, temperature, thermal expansion; specific heat - calorimetry; change of state - atent

Heat transfer-conduction, convection and radiation, thermal conductivity, Newton's law of cooling.

Unit VIII: Thermodynamics

Thermal equilibrium and definition of temperature (zeroth law of thermodynamics). heat, work and internal energy. First law of thermodynamics. Second law of thermodynamics: reversible and irreversible processes. Heat engines and

refrigerators.carnot cycle and carnot's theorem. Equation of state of a perfect gas, work done on compressing a gas.

Kinetic theory of gases , degrees of freedom, law of equipartition of energy and application to specific heats of gases; concept of mean free path, Avogadro's number.

Unit IX: Oscillations and Waves

Periodic motion - period, frequency, displacement as a function of time. Periodic functions. Simple harmonic motion (S.H.M) and its equation; phase; oscillations of a .pringrestoring force and force constant; energy in 5.H.M.-kinetic and potential energies; simple pendulum-derivation of expression for its time period; free, forced and damped oscillations, resonance.

Wave motion, Longitudinal and transverse waves, speed of wave motion, Displacement . relation for a progressive wave. Principle of superposition of waves, reflection of waves,

standing waves in strings and organ pipes, fundamental mode and harmonics, Beats, Doppler effect.

Unit X: Electrostatics

Electric Charges; Conservation of charge, Coulomb's law and its application, force between two point charges,

forces between multiple charges; superposition principle and continuous charge distribution. Electric field, electric field due to a point charge, electric field lines; electric dipole, electric field due to a dipole; torque on a dipole in uniform electric field.

Gauss's theorem and its applications

Electric potential, potential difference, electric potential due to a dipole and system of charges; equipotential surfaces, electrical potential energy of a system of

two point charges and of electric dipole in an electrostatic field.

Conductors and insulators, free charges and bound charges inside a conductor. Dielectrics and electric polarisation, capacitors and capacitance, combination of capacitors, capacitance of a parallel plate capacitor with and without dielectric medium

between the plates, energy stored in a capacitor. Van de Graaff generator.

Unit XI: Current Electricity

Electric current, flow of electric charges in a metallic conductor, drift velocity, mobility and their relation with electric current; Ohm's law, electrical resistance, V-I characteristics (linear and non-linear), electrical energy and power, electrical resistivity and conductivity. Carbon resistors, colour code for carbon resistors; series and parallel combinations of resistors; temperature dependence of resistance.

Internal resistance of a cell, potential difference and emf of a cell, combination of cells in series and in parallel.

Kirchhoff's laws and its applications..

Potentlometer - principle and its applications

Thermal and chemical effect of current.

Unit XII: Magnetic Effects of Current and Magnetism

Biot - Savart law and its application

Ampere's law and its applications to infinitely long straight wire, straight and toroidal solenolds.

Lorentz's force. Cyclotron, synchrotron.

Interaction of a current-carrying conductor with magnetic field. Force between two parallel current-carrying conductors. Torque experienced by a current

loop in uniform magnetic field and its application;

Current loop as a magnetic dipole and its magnetic dipole moment. Magnetic dipole momental a revolving electron. Magnetic field intensity due to a magnetic dipole (bar magnet) along its axis and perpendicular to its axis. Torque on a magnetic (lipole (bar magnet) in a uniform magnetic field; bar magnet as an equivalent solenoid, magnetic field lines; Earth's magnetic field and magnetic elements. Para-, dia- and ferro - magnetic substances, with examples. Electromagnets and factors affecting their strengths. Pennanent magnets.

Unit XIII: Electromagnetic Induction and Alternating Currents Electromagnetic induction; Faraday's law, induced emf and current; Lenz's Law, Eddy currents. Self and mutual Inductance.

Need for displacement current.

Alternating currents and its measurement reactance and Impedance; LC oscillations, LCR series circuit, resonance; power in AC circuits,:

generator, motors and transformer.

UnitXIV: Optics

Reflection of light, spherical mirrors, mirror formula, Rofraction of light, total internal reflection and its applications, optical fibres, refraction at spherical suifaces, lenses, thin lens formula, lens-maker's formula. Magnification, power of a lens, combination of thin lenses in contact. Refraction and dispersion of light through a prism.

Scattering of light and its application. Optical instruments: Human eye-eye defects and its correction. Microscopes

and astronomical telescopes and their magnifying powers. Wave optics: wave front and Huygens' principle, reflection and refraction of plane wave at a plane surface using wave fronts. Proof of laws of reflection and refraction using Huygens' principle. Interference, Young's double slit experiment and expression for fringe width. coherent sources and sustained interference of light. Diffraction due to a single slit, with of central maximum. Resolving power of microscopes and astronomical telescopes. Polarviation, plane polarised light; Brewster's law, uses of plane polarised light and Polaroids.

UnitaXV: Modern Physics

Dual nature of radiation. Photoelectric effect, Hertz and Lenard's observations; Einstein's photoelectric equation-particle nature of light. Compton effect, deffraction of X- rays , Bragg's law ,Hall effect.

Matter waves-wave nature of particles, de Broglie relation. Davisson-Germer experiment. Alpha particle scattering experiment; Rutherford's model of atom; Bohr model, energy levels, hydrogen spectrum.

Composition and size of nucleus, packing fraction and magnetic moment, atomic masses, isotopes, isobars; isotones, Radiouctivity-alpha,

bota and gamma particles/rays and their properties; radioactive decay law.

Mass energy relation, mass defect; binding energy per nucleon and its variation with mass number; liquid drop model of nucleus, nuclear fission and fusion, critical mass, chain reaction and fission reaction, ionization chamber, Geiger counter and scinitiliation counter, linear accelerator.

Unit XVI: Electronic Devices

Semiconductors; semiconductor diode – I-V characteristics in forward and reverse bia , diode as a rectifier; I-V characteristics of LED, photodiode, solar cell, and Zener diode Zener diode as a voltage regulator. Junction transistor, transistor action, characteristics of a transistor; transistor as an amplifier (common emitter configuration) and oscillator. Togic gates and its combination. Transistor as a switch.

Topics of syllabus-Teaching Education and Methodology:-

- 1. Learning & Teaching
- 2. Language across the curriculum
- 3. Understanding discipline and subject
- 4. Gender school and Society
- 5. Pedagogy of a school subject
- 6. Knowledge and curriculum
- 7. Assessment for learning
- 8. Creating an inclusive school
- 9. Childhood and growing up
- 10. Drama and Art in Education